Cell Division and Inheritance

Continuing life relies on reproduction
- Individual organism—replacing dead or damaged cells
- Species—making more of same species

Reproduction
- Cells divide, grow, divide again

CELL DIVISION
- Mitosis—division of body (somatic) cells by multicelled organisms
 - Increasing number of cells during growth
 - Replaces cells that are worn-out, dead, or damaged
 - Asexual reproduction by some plants, animals, fungi, single-celled protists
 - In undifferentiated somatic cells (skin, liver, bone marrow, blood vessels), not in differentiated cells (nerve and muscle cells, adult stem cells)
- Meiosis—formation of sex (germ) cells (sperm, eggs) and spores
 - Basis for sexual reproduction
 - Creates gametes
 - Prokaryotic (Binary) fission

BINARY FISSION
- Prokaryotes have no nucleus or organelles.
- As chromosome duplicates, copies move to opposite sides of cell.
- After duplication and cell growth, membrane grows inward, dividing the cell.
- Daughter cells same genes as parent cell
 - Effectively are clones of the parent cell

CHROMOSOMES
- Basis for genetic code
- Different number of chromosomes in each species
- Copied before cell division
 - Sister chromatids

1. Plasma membrane
2. Duplication of chromosome and separation of copies
3. Continued elongation of the cell and movement of copies
4. Division into two daughter cells
CHROMOSOMES
- Chromosome number—sum total of chromosomes
- Diploid number—number of chromosomes when including pairs, “2n”
 - One set from each parent
 - Somatic cells
- Homologous chromosomes—each chromosome in a matched pair
 - Only one set of each sex chromosome
- Haploid number—half of the normal chromosome number, “n”
 - Gametes

Diploid number = 46 in humans (“2n”)
Haploid number = 23 in humans (“n”)

CHROMOSOMES
- DNA helix wraps around histones, forms nucleosome
- Multiple levels of coiling into chromatin
- Condensed into chromosome

Interphase—normal growth and function
- G1—initial growth & normal roles
- S—DNA replication
- G2—preparation to divide

Mitosis (about 10% of cell’s cycle)
- Prophase
- Metaphase
- Anaphase
- Telophase
 - Mitosis - nuclear division in the cell cycle
 - Cytokinesis - division of the cytoplasm
When a eukaryotic cell is not undergoing division, the DNA within a chromosome is a mass of thin threads called chromatin.

- Before nuclear division chromatin condenses.
- 2 identical chromatids are sister chromatids.

Interphase

- **G1**
 - Most of life for many cells
 - Normal functions
- **S**
 - New strands of DNA created from existing strands
 - Chromosome doubles into connected sister chromatids
- **G2**
 - Microtubules and other structures made for cell division
 - Organelles duplicated

Mitosis

- **Prophase**
 - Chromosomes become visible
 - Centrioles form spindle fibers
 - Nuclear membrane starts to break down
 - Centromeres modified into kinetochores
 - Site of spindle attachment

- **Metaphase**
 - Centrioles moved to opposite ends of the cell (“poles”)
 - Chromosomes lined up in middle of cell
 - Spindle fibers attached to centromeres

- **Anaphase**
 - Sister chromatids pulled towards each pole and separate
 - Cell elongates in direction of poles

- **Telophase**
 - Cell divides in middle, forms cleavage furrow
 - Cytokinesis—complete cell division
 - Nuclear membrane re-forms around each set of chromosomes
Mitosis
- Condensed chromosomes
- Nuclear envelope
- Sister chromatids
- Centromere

Interphase
- Early prophase
- Late prophase
- Metaphase
- Anaphase
- Telophase

Chromosomes
- Duplicated during S-phase of interphase
- Divide during anaphase

Cytoplasmic Division
- Animal cells
 - Contractile ring mechanism—actin filaments at equator contract

Cytoplasmic Division (Cytokinesis)
- Plant cells
 - Vesicles cluster at equator
 - Vesicle membranes fuse
 - New cell membranes form along fused vesicles
 - Cell Plate
 - Cellulose deposited between membranes, will form new cell walls

Cell Cycle Control Occurs at Checkpoints
- The cell cycle has checkpoints that can delay the cell cycle until all is well
 - Apoptosis - programmed cell death
- Cancer occurs when cell division is uncontrolled. Checkpoints fail to stop cell division, and apoptosis does not occur.
Contact Inhibition - In a culture, cells divide until they line a container in a sheet and then stop dividing
- Cells “remember” number of divisions

Telomere - repeating DNA base sequence
- Each time a cell divides some portion of a telomere is lost (approx. 70 cycles)
- When telomeres become too short, chromosomes fuse and do not duplicate

Cancer Cells Have Abnormal Characteristics
A mutation (a DNA change) causes a cell to divide uncontrollably or ignore apoptosis
- Carcinogenesis - development of cancer

Characteristics of cancer cells:
- Lack differentiation
- Have abnormal nuclei
- Form tumors
- Metastasis - establishing new tumors
- Angiogenesis - formation of new blood vessels

Normal Cell Division
- Growth Factors
 - Proteins produced by an organism that can trigger cell division
- Density-dependent inhibition
 - Crowded cells stop dividing
 - Respond to touch of bordering cells
 - Keep overgrowth from happening
- Anchorage dependence
 - Most animal cells must be in contact with a solid surface in order to divide.

Abnormal Cell Division
- Teratogens—environmental factors that cause abnormal cell division
 - Radiation (UV, x-rays, radon)
 - Organic chemicals (nicotine, pesticides)
 - Viruses (polio, German measles, chicken pox)
- Normal protective mechanisms
 - Keep cells in certain stages (such as G1)
 - Triggers to start and stop cell division & growth
 - Fix damaged DNA
 - Destroy abnormal cells

Cancer
- Controls on cell division broken
- Cells grow and divide uncontrollably
 - Ignore density-dependent inhibition
- Cytoplasm and plasma membrane altered
 - Enzyme actions within the cell shift
- Weakened adhesion
 - Break away and establish colonies—metastasis
- May be lethal
 - Chemical byproducts of tumor
 - Invading and crowding out other tissues
SEXUAL REPRODUCTION
- Meiosis → Gamete formation → Fertilization
- Diploid → Haploid → Fertilization → Diploid

MEIOSIS
- Almost identical to mitosis
- Chromosomes mix
- Cells and chromosomes divide TWICE before process ends
- Ends with 4 daughter cells, each haploid
- Pro-, Meta-, Ana-, Telophase I
- Pro-, Meta-, Ana-, Telophase II

MEIOSIS
- **Prophase 1**
 - Homologous chromosomes pair up (Synapsis)
 - Usually swap segments (crossing over)
 - Otherwise normal prophase
 - Crossing over during meiosis

MEIOSIS
- **Metaphase 1**
 - Spindle fibers attach to centromere of each type of chromosome
 - Otherwise normal metaphase
- **Anaphase 1**
 - Homologous chromosomes separated to each pole of cell
 - Otherwise normal anaphase
- **Telophase 1**
 - Cytokinesis (normal telophase)
 - Does NOT go to Interphase

MEIOSIS
- **Prophase II**
 - New centrioles move to poles of new cells
- **Metaphase II**
 - Spindle fibers attach to centromeres
 - Chromosomes line in middle
- **Anaphase II**
 - Sister chromatids break apart, move to poles
- **Telophase II**
 - Cytokinesis
 - Each daughter cell is haploid

MEIOSIS
- DNA is NOT duplicated prior to 2nd stage of Meiosis
- Interkinesis (the period between meiosis I and II)

No replication of DNA occurs during **interkinesis** (the period between meiosis I and II).
MITOSIS VS. MEIOSIS

MITOSIS
- Somatic cells
- Grow, replace, repair
- 2 daughter cells, 2n
- No synapsis
- No genetic diversity, minimal variation
- One division
- Used for asexual reproduction

MEIOSIS
- Sex cells
- Reproduction
- 4 daughter cells, n
- Frequent synapsis
- Great genetic diversity
- Two divisions
- Used for sexual reproduction

THE LIFE CYCLE OF MOST MULTICELLULAR ORGANISMS INCLUDES BOTH MITOSIS AND MEIOSIS

Life cycle - in sexually reproducing organisms, all the reproductive events from one generation to the next
- Spermatogenesis in males, occurs in the testes and produces sperm
- Oogenesis in females, occurs in the ovaries and produces eggs

Zygote - product of the sperm and egg joining during fertilization, has homologous pairs of chromosomes

GENETIC VARIATION

- Allele—different forms of the same gene
 - Affects different traits—“dimple”, “no-dimple”
 - Mixing alleles results in variations of traits

Crossover (Prophase I)
- Switches alleles

Homologous Alignments (Metaphase I)

LIFE CYCLE OF HUMANS

LIFE CYCLE OF PLANTS

LIFE CYCLE OF ALGAE

43
44
45
46
47
48
Multiple possible combinations of chromosomes

In a single fertilization (one baby) there are...

- 8,388,608 combinations of homologous chromosomes
- 70,368,744,000,000 possible variations of offspring
- Including crossing over--4,951,760,200,000,000,000,000,000,000,000,000,000,000,000,000 possible genetic variations!!!!

Karyotype - picture of chromosomes in numbered pairs called homologous chromosomes or homologues

- X and Y chromosomes are the sex chromosomes because they contain the genes that determine gender
- Autosomes - all the pairs of chromosomes except the sex chromosomes
Sex Chromosomes

- Culture cells, stimulate mitosis, stop division at metaphase.
- Hypotonic solution swells cells, separates them & chromosomes.
- Take picture, cut & paste.
- Gives an image of the person’s/animal’s actual chromosomes.
- Can analyze for abnormalities.

Chromosome Abnormalities

- Changes in physical structure of chromosome.
- Cause genetic disorders or abnormalities.
- Often a disruption during crossing over.
- Rare.
- Duplication.
- Deletion.
- Inversion.
- Translocation.

Duplication

- DNA sequences are repeated 2 or more times.
- Unequal crossing-over.
- Broken piece of chromosome attaches to homologous chromosome.
- Huntington’s Disease:
 - Affects coordination & movement.
 - Affects mental abilities, personality.

Deletion

- DNA sequence deleted.
- Unequal crossing-over.
- Chemical damage.
- Most cause serious disorders or death.
- **Cri du chat syndrome**:
 - Severe developmental & neurological problems.
 - Unusual cry of infant (“cry of the cat”).
 - Unusual physical appearance.

Inversion

- DNA sequence reverses.
- No loss of DNA or chromosome part.
- No problem for carrier if non-crucial gene.
- Some may not know until children have problem.
- **Chromosome 9**:
 - No health problems for parent.
 - May increase risk of miscarriage.
Translocation
- Broken part of one chromosome attaches to another
 - Non-homologous chromosomes
 - Usually reciprocal (both exchange broken parts)
 - Often cause reduced fertility
 - Severe problems rare
 - Can include several cancers
 - Can cause death or disorders: e.g., Burkitt’s lymphoma

Chromosome Number
- Aneuploidy—one more one less chromosome than normal
 - Monosomy (2n - 1) only one of a type of chromosome
 - Trisomy (2n + 1) three of a type of chromosome
 - Usually fatal for humans
 - Most miscarriages
 - Nondisjunction—one or more pairs do not separate during meiosis
 - Polyploidy—cells with 3 or more copies of one or more chromosomes (e.g., triploid = 3n, tetraploid = 4n)
 - Trisomy—cells with 2n+1 of one chromosome, 2n of all others
 - Special form of polyploidy

Nondisjunction

- Down Syndrome (Trisomy 21)
 - Only trisomy that reaches adulthood
 - Extra copy of chromosome 21
 - Mostly through nondisjunction at meiosis
 - Abnormal mental, heart, and skeletal development
SEX CHROMOSOME ABNORMALITIES

- Turner syndrome (females)
 - Nondisjunction of sex chromosomes
 - Only one X, noted as “XO”
 - 98% of embryos miscarry
 - Adults very short, but well proportioned
 - Sterile, limited sex hormones
 - Female

- Klinefelter syndrome (male)
 - 2/3 Nondisjunction of sex chromosomes
 - XXY
 - Mostly normal, some learning disabilities
 - Lower testosterone, higher estrogen
 - “Feminized” male characteristics
 - Male