Breakdown-free version of ILU factorization for nonsymmetric positive definite matrices

A. Rafiei *, F. Toutounian

Department of Mathematics Ferdowsi University of Mashhad, Mashhad, P. O. Box. 91775-1159, Iran

A R T I C L E I N F O

Article history:
Received 20 August 2007
Received in revised form 18 July 2008

M S C:
65F10

K e y w o r d s:
Implicit preconditioner
Sparse matrices
RIF

A B S T R A C T

In this paper a new ILU factorization preconditioner for solving large sparse linear systems by iterative methods is presented. The factorization which is based on A-biorthogonalization process is well defined for a general positive definite matrix. Numerical experiments illustrating the performance of the preconditioner are presented. A comparison with the well known preconditioner RIF p of Benzi and Tůma is also included. © 2009 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we consider the solution of linear systems of the form

\[Ax = b, \] (1)

where the coefficient matrix \(A \in \mathbb{R}^{n \times n} \) is large, sparse and nonsymmetric positive definite (NSPD), and \(b \) is a given right hand side vector using preconditioned conjugate gradient-type methods. Suppose that \(A \) admits the factorization

\[A = LU, \] (2)

where \(L, U^T \) are unit lower triangular matrices and \(D \) is a diagonal matrix. If \(\tilde{L} \) and \(\tilde{U}^T \) are sparse unit lower triangular matrices approximating (in some sense) the matrices \(L \) and \(U^T \), respectively, and \(\tilde{D} \) is a nonsingular diagonal matrix approximating \(D \), then we say that matrix \(M \) with

\[M = \tilde{L}\tilde{D}\tilde{U} \approx A, \] (3)

is an incomplete LU (ILU) factorization preconditioner for matrix \(A \). The transformed linear systems

\[AM^{-1}u = b, \quad M^{-1}u = x, \] (4)

or

\[M^{-1}Ax = M^{-1}b, \] (5)

have the same solution as system (1) and seem to be better-conditioned than the original system (1) to solve. It is well-known that an incomplete factorization of a general matrix \(A \) may fail due to the occurrence of zero pivots, regardless of